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Transformations in Special Relativity
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By using the principle of relativity alone (no assumptions about signals or light)
it is shown that a relativisitic group of linear transformations of a spacetime
plane is, if infinite, either Galilean, Lorentzian or rotational. The largest such
finite group is a Klein 4-group, generated by space-reversal and time-reversal.
In the infinite case an invariant of the group, denoted ¢, appears. When c is real,
nonzero, noninfinite, then the group is a Lorentz group and c is identified with
the speed of light. Lorentz transformations are represented through an algebra
D of iterants that provides a link among Clifford algebras, the Pauli algebra and
Herman Bondi’s K-calculus.

1. INTRODUCTION

The purpose of this paper is to prove a theorem about groups of
transformations of R” that obey the principle of special relativity. The
theorem is as follows:

Theorem A. Let G be a group of linear transformations of the real
plane R? to itself. Let o: R*> R? be the map defined by the formula

o(a, b)=(a, —b)

Suppose that every element T € G satisfies the relation (T o o)*= I, where
o denotes composition and I is the identity transformation. (We say G is
maximal if it satisfies the hypothesis (T o)>=I, and is not contained in
any larger group that satisfies this hypothesis.) Then:

(i) If G is maximal and of infinite order then there is a constant ¢
that is an invariant of G (¢ may be computed from any element of G that
is not equal to plus or minus the identity) such that:
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1. If ¢=0 or ¢c=0 then G is isomorphic to a group of Galilean
transformations.
2. If ¢ is real and neither zero nor infinite, then G is isomorphic to
the Lorentz group for one space dimension and one time dimension.
3. If c¢ is imaginary, then G is isomorphic to SO(2), the group of
rotations of the plane.
These three cases exhaust the possibilities for G of infinite order.
(ii) If G is maximal and of finite order, then G is isomorphic to the
Klein four-group Z, X Z,.

We will explain how the hypothesis (T ¢ o)?*=1 corresponds to the
principle of relativity in Section 2. The theorem is proved in Section 4.
Examples and relationships with other formalisms are discussed in Sections
3,5,6,and 7.

Theorem A is closely related to the results of Edmund DiMarzio (1977).

In the case of a real constant, when G is a Lorentz group, this constant
corresponds to the speed of light (in the usual physical interpretation). It
is remarkable that these physical features appear inevitably in the abstract
framework. Our version of the relativity principle makes no assumption
about limiting velocity, or about the speed of light.

Along with Theorem A, this paper also discusses a particular mode of
representation for Lorentz transformations. This mode uses an aigebra D
that is analogous to the complex numbers. This algebra consists in numbers
of the form a+ib with a and b real.

Multiplication in D is denoted by *, and i * i =+1. Thus (a+ib) * (¢ +
id) =(ac+ bd)+i(ad+bc). This structure is particularly well suited to
special relativity in the case where the speed of light is equal to one. In
Section 3 we show how the Lorentz transformation is given by the formula

+ix' =[(1+iv)/(1 - vH)"?]* (1 +ix)

when the transformation is between inertial frames with relative velocity v.
In Section 5 we reexpress D in what I call iterant coordinates [A, B].
Here

[A, B]=((A+B)/2)+i((A—B)/2)and [a+b,a—b]=a+ib
Thus i=[+1, —1] in the iterant coordinates, and one can think of i and
—i(=[—1, +1]) as representing two views of the process
—t—t—t—F—t—t—F—F—t—+—
(This process can be seen as a repetition of [+, —] or as a repetition of [—, +].)

In the iterant coordinates the Lorentz transformations have the par-
ticularly simple form

T[A, B]|=[K'A, KB]
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The physical interpretation of these coordinates comes through the identity
t+ix=[t+x, t—x]

In Section 6 we show how the pair [+ X, t — x] can be regarded as two time
measurements by an observer: (¢ —x) is the time of emission of a light flash.
(t+x) is the reception time of a reflection of this flash from an event E. It
follows that the event has space-time coordinates (f, x) for this observer.
The iterant formulation provides a link with the K calculus of Herman
Bondi (1964).

Finally, in Section 7 we combine the dual numbers D with the complex
numbers C to form M =D xC, a four-dimensional space-time. This leads
directly to the Hermitian formalism, the Pauli matrices, and to quaternionic
transformations in special relativity.

In regard to Theorem A, it is worth mentioning that in the case of the
Klein 4-group, G is generated by space reflection [o(t, x) = (¢, —x)] and
time-reflection [o'(¢, x) = (—t, x)]. Except for this finite case, time is con-
strained by the principle of relativity to flow forward.

2. THE PRINCIPLE OF RELATIVITY

1t is well known that space-time coordinates for inertial frames are
related by a linear transformation. Furthermore, spatial coordinates perpen-
dicular to the direction of motion are left invariant. Consequently, it suffices
to consider linear transformations of R,

(t', x')=T(¢, x)

where x corresponds to the direction of motion, and t corresponds to the
(direction of) time.

Call the coordinates (¢, x) and (¢, x’} compatible if the positive direc-
tion for x is also the positive direction for x'. See Figure 1.

/T zrt’

Fig. 1. Compatible coordinates.
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X x’

> ¢

Fig. 2. Mirrored coordinates.

It may also happen that the positive direction for x is the negative
direction for x'. In this case, call the coordinates mirrored. See Figure 2.
The following is then a mathematical form of the principle of special relativity:

(0) If T is a transformation of inertial frames, then T is invertible,
and its inverse is also a transformation of these frames.

(1) If 0,0',0" are three compatible frames and T:0-0', T":0'~> 0",
T":0- 0" are the transformations relating them, then 7"=T"¢ T.

(2) If 0 and 0" are mirrored frames and S:0- 0" is the corresponding
transformation, then the transformation from 0’ to 0 is also given by §, and
[by (0)] S S=1

Statement number (2) embodies the simplest instance of the intuitive
relativity principle. The mirrored frames are symmetrical with respect to
each other. Hence they must be related by the same transformation.

It is worth noting that while we are allowed to reflect the space
coordinate via o(z, x)=(t, —x), we have no such freedom to reverse the
direction of time.

Since o: R>> R? interchanges compatible and mirrored coordinates, it
follows from (0), (1), and (2) that (T o)*=1I whenever T:R*>R%is a
relativistic transformation of compatible frames.

Hence we conclude that the set G of all relativistic transformations of
compatible frames (all compatible with one another) forms a group under
composition. And (T o)*>=1I for every T in G.

This completes the explanation of our choice of hypotheses for
Theorem A.

3. PRELUDE TO THEOREM A

In this section we show how to deduce the Lorentz transformation in
a special context. In Section 4 this argument will be generalized to become
the proof of Theorem A.
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Let D ={z+ix|t, x € R}. Here i is a symbol satisfying the identity i * i =
+1. (Multiplication in D is denoted by *.) D will be referred to as the set
of dual numbers. The dual numbers are formally similar to the complex
numbers. Thus multiplication is given by the formula (a+ib) * (¢ +id) =
(ac+bd)+i(ad + bc). Conjugation is defined by the formula

gla+ib)y=(a+ib)=a—ib

Note that a>~ b®>= (a +ib) * (a — ib). Thus D embodies the hyperbolic
metric of Einstein’s special relativity.

The dual numbers may also be identified with a subalgebra of the Pauli
algebra. This connection will be discussed in Section 7.

In this section we derive Lorentz transformations by adopting the
following.

Assumption D. Suppose that G is a group of transformations of D such
that (1) for each T in G there is an element w of D such that T(z)=w * z
for all zin D and (2) (T o)*=1 for each T in G.

Proposition 3.1. Assumption D implies that G is the Lorentz group
(light speed normalized to 1).

Proof. Let Te G and weD so that T(z)=w=*z for all zeD. The
condition (T o o)’ =TI implies that w=(w=*z)=2z for all z in D. Since
X*Y=X=*Yand X=X forall X,Y in D, we have (w* w)*z=z for
all z in . This implies that w = w = 1.

To obtain the specific form of T, let w=a+ib. Then w * w=1 implies
that aa — bb=1. Hence w=(1+iv)/(1—-v%)"? where v=b/a. Note that v
has the dimensions of velocity (if we interpret b as position and a as time).
Then

T(t+ix)=[(1+iv)/(1 -] (t+ix)
T(t+ix) =[(t+vx)/(1 - ) +i[(x+vt)/(1 - v7)?]

Thus T is a Lorentz transformation for frames with relative velocity v, and
light speed equal to 1. This completes the proof of the proposition. W

Remark. In this derivation we did not assume that T left the metric
z* Z=(t+ix) * (t—ix) = t*— x° invariant. Nevertheless, this invariance is
a consequence of the restriction w * w = 1. That is,

T(z) * T(z) = (w# z) * (w* 2)
(wez)#(wkz)=(w*Ww)*(z%2)
CT(2)xT(z)=z%%

Hence 2 —x"? = —x2
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The Lorentz transformations are a consequence of the use of the dual
numbers. If D is replaced by the complex numbers C (where ii = —1), then

T(z)=wz with ww=1 implies that T is a rotation of the plane about the
origin. This corresponds to part 3 of Theorem A.

4. PROOF OF THEOREM A

We now assume that G is a group of 2 X2 real matrices. Let

o )
-6 )-(5)

By hypothesis, T € G implies that (T ¢ )* = I where I is the identity matrix.

For any 2 X2 matrix
a b
M =
(a o

the condition MM =1 is equivalent to the condition M = M™'. This, in

turn, is equivalent to
(& J-aa )
d ¢/ A\-d a

where A= ac—bd (the determinant of M). This forces A==1.

IfA— 1 then
( )_( )
d c —d a

hence a=c¢, b==d =0, and aa=ac=+1. Thus M ==1I.
If M =(To) has determinant equal to —1, then a similar calculation
shows that T (not M but T) has the form

(i o)

with aa —bd = 1. Thus we have the following.

so that

Lemma 4.1. Let T be an invertible 2 X2 real matrix with (To)’=1

where
1 0 , (-1 0
o—(o _1) and —( 0 1)
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Then (1) Det(T)=—1 implies that T is o or o™'; (2) Det(T)=+1 implies

that
a b
T:
(a 2)
where aa—bd =1.

Returning to the proof of Theorem A, if G contains o and G also
contains an element T with determinant equal to +1, then To belongs to
G. Hence [(To)oP=1. Thus TT =1. Hence T is 1.

Using a similar argument with o', we obtain the following.

Lemma 4.2. Let G be a group of 2 X2 matrices such that (To)*= I for
all T in G. (o and o' are as above.) If o or ¢’ belongs to G, then G is
isomorphic to one of the following groups:

{la 0'} = Z2
{l,0t=2,
{la _17 g, U'/} EZZ XZZ
(The latter is referred to as the Klein 4-group.)

Having classified those groups containing o or o', we now assume
(using 4.1) that all elements of G have the form

a b
T =
(d a)
with aa —bd = +1.
Suppose T' is also in G.

Then TT' belongs to G, and
IT = ( a b)(a’ b’) B (aa’+ bd' ab'+ ba’)
d a/\d a da'+ad' db'+aa’
must also have equal elements on the main diagonal. Therefore aa’+ bd’ =
db'+aa’. Hence bd' = db’. Therefore d/b=d'/b’.
It may happen that G = = I, in which case these formal fractions contain
no information. Otherwise, the matrices each have at least one nonzero

off-diagonal term. Then d/b=d’/b’ is meaningful, taking real values that
include 0 and <.
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By using ¢=(d/b)"? we can rewrite T into the form of a Lorentz
transformation. The rest of the argument follows by specializing the values

of c¢. The translation:
a b
T= *—bd =
( d a)’ a 1

Let c=(d/b)/*and v=d/a.

_ 1 1 v/c?
=>T_(l—vz/cz)W(v 1)

This looks like a Lorentz transformation, and it is a Lorentz transforma-
tion when 0 < c¢<<co. If ¢ =00 then

()

hence t'=t and x'= vt + x. This is a Galilean transformation. If ¢ =0, then
d =0, b# 0 and again we obtain a transfczmation of Galilean type. Hence
the group of transformations with this invariant is isomorphic to the Galilean
group. The isomorphism interchanges space and time coordinates.

If ~c0<¢®<0, then T preserves the form c’t*+x? and hence is a
rotation of the (|cjt, x) plane.

These observations and lemmas combine to give the proof of
Theorem A.

Remark. When c=1 we have d = b, hence

;9 9 )

The algebra of these matrices (without restriction on a and b) is isomorphic
to the dual numbers D introduced in Section 3. In this form, each point in
space-time is represented by a matrix

(7

The Lorentz transformations are the subalgebra of matrices satisfying ¢>—
2
x‘=1.

5. REMARKS ON THE DUAL NUMBERS

We have seen in Sections 3 and 4 that the dual numbers D=
{a+ibli * i =+1} bear a close relationship with special relativity. Lorentz
transformations are represented by T(z)=w=#z  where w=
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(1+iv)/(1+ v*)"% In this section we make some remarks about the pattern
of this number system.
Consider the following linear pattern:

...ABABABABABABABABABABABABABABABABABABABABAB...

This can be seen as an endless repetition of AB or as an endless repetition
of BA. Accordingly, we choose the notations [A, B} and [ B, A] to represent
the two views of the pattern. Call [ A, B] the conjugate of [ B, A]. And write
[A, B]=[B, Al

There is an algebra for combining these patterns:

[A, B]+[C, D]=[A+ C, B+ D]
[A, B]*[C, D1=[AC, BD]

If we take the elements of these patterns to be real numbers, then the
iterant algebra is isomorphic to the dual numbers D. The isomorphism is
given by the correspondence a+ib=[a+b,a—b]. Thus 1=[1,1] and i=
{1, —1]. See Comfort (1984), Kaufiman (1980), Kauffman and Varela (1980),
and Kauffman (to appear) for further comments.

This context for the iterant algebra invokes the concept of multiple
viewpoint. The iterant [A, B], and its conjugate [ B, A] are mathematical
analogs of two mutually exclusive perceptions of a single form. In this
model, form is represented by the periodic process... ABABABABABA .. ..
Just so, for an observer, a form or object with spatial and temporal extent
is seen as an (apparently) periodic series of observations—all views of one
whole.

In the next section we shall see that, for an observer, an event in
space-time can be idealized as two time-measurements: one of signal sent,
one of signal received. In this form an object (process) becomes a series of
such observations in the form: ...SEND, RECEIVE, SEND, RECEIVE,
SEND, RECEIVE,.... The crucial choice of what is regarded as sent, and
what is regarded as received is determined largely by context. This context
includes agreement throughout the given community of observers. Iterant
algebra abstracts orly the simplest elements of this complex process.

6. DUAL NUMBERS AND THE K CALCULUS

The last section remarked on the mathematical pattern of the dual
numbers, and introduced the iterant coordinates:

[A, B]l=[(A+ B)/2]+i[(A—-B)/2]
[a+b,a—-bl=a+ib
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An event (7, x) is represented in D as ¢+ ix = [t + x, t — x]. One physical
interpretation of the iterant coordinates [t+x, t —x] is given by Herman
Bondi (1964) in the context of his K calculus. Here is a direct quote [Bondi
(1964), pp. 116-118]:

Let Alfred use coordinates f, x and Brian coordinates t', x', so that Alfred is
x =0, Brian is x' =0, and at the meeting of Alfred and Brian 7= t'=0. Consider
an event which, seen by Alfred, is beyond Brian [Figure 3; Bondi’s Figure 23].
Alfred emits a radar pulse at time ¢~ x and receives it back at time 7+ x so that
he assigns coordinates f, x to the event. Similarly, Brian emits a pulse at ¢'~x’
and gets it back at ¢'+x".

But in fact Brian emits his pulse as Alfred’s pulse passes him and receives
it as the returning pulse to Alfred passes him. Hence #'—x'= K(t—x) and
t+x=K(t'+x).

In Bondi’s terminology the observers Alfred and Brian are separating

at constant velocity. The lines labeled Alfred and Brian in Figure 3 represent
their respective time coordinates (world lines) in two-dimensional space-

/N Alfred Brian

£ +x

Fig. 3. The Lorentz transformation.
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time. The constant K is the ratio K = (interval of reception)/(interval of
transmission). Thus, if Alfred sends a pulse at time (¢t —x) on his world
line, and the pulse is received at time (¢t'—x’) on Brian’s world line then
K=(t'-x"Y/(t—x).

The rest of Bondi’s argument uses the geometry of the figure plus the
consequence (of the principle of relativity and constancy of light speed)
that K remains the same when the roles of Alfred and Brian are inter-
changed. In this way the Lorentz transformation takes the form

[f+x, ¢ —x]=[K'(t+x), K(t—x)] or
T[A, B]=[K'A, KB]

This is exactly the form of the Lorentz transformation in iterant coordinates.

It is useful to derive the relation between K and the velocity v (v is
the relative velocity of the two frames). Since the Lorentz transformation
is represented by (1—iv)/(1 —v?)"/* for this geometry, we have (1 —iv)/(1 -
v)?=[K™, K]. Hence (1—iv)/(1-v)"*=[(K'+K)/2]+ i[(K™'-
K)/2]. Therefore v=(K-K")/(K+K")=(K?*-1)/(K*+1). This
relationship can be derived directly in the K calculus by considering another
thought experiment involving transmission and reception (Bondi, 1964, p.
103).

These remarks exhibit the physical meaning of the iterant coordinates.
From the point of view of a given observer, an event is indexed by a pair
[A, B], where B is the time of emission of a signal, and A is the time of
reception of another (correlated) signal. It is through the patterning of such
pairs that we create descriptions of the world of events.

7. COMBINING DUAL NUMBERS AND COMPLEX NUMBERS

Four-dimensional space-time can be obtained by combining the com-
plex numbers C with the dual numbers D). We can also go to four-space
directly by remarking that in the formalism 7+ ix the i represents a vector
direction in three-dimensional space. As this leads directly to the notion of
a Clifford algebra, we examine this point of view first.

See Figure 4. Here i is written as a linear combination of basis vectors
oy, 03, 03 for Euclidean three-space. The basis vectors are orthogonal and
of unit length. It is assumed that i has unit length, hence x>+ y*+z°=1,

In the dual numbers, and in order to represent Lorentz transformations
we assumed that i * i =+1. If we assume that this algebraic structure can
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X
Ny

s

4+ i alere, £-4L)

£~

>

Fig. 4. Lorentz transform {[t'+x', —x1=[K', K}*[t+xt—-x]; [A B]*[C D]=
[AC, BDY; i=[1, —1]=i*i=[1,1]=1; i = x0o, + yo,+ zoy=>Clifford algebra

SPa.c.e

O ¥ =0, %0, =03%0;=1

g% Oy=—0,% 0y
0'1*0'3=—a'3*o-l
0¥ 03= =03% 0y

be extended to all the vector directions in three-space, then it follows that
’=01=03=03="+1 (x*=x*X)
i=x0+ yo,+ zo,, x’+y*+z=1
=i*i
2 2 2
x“+y+zi (o % oyt gy o)Xy
1= + (o * o3+ o3 gy)xz

+(oy % 03+ 03 % 02)yZ

O ROy =0 % Oy, i#]j
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This means that the unit directions must form a Clifford algebra. The
simplest model is the Pauli algebra where

_(1 0) _<0 1) _( 0 (—1)‘“)
g, = 0o -1/ 0= 1 o) g3 = _(_1)1/2 0

t+x y+(—1)1/22>

E=t+xo'1+y0'2+203=(y_(_l)l/zz f—x

In this way an event is represented by a Hermitian matrix H (above).
It is curious to note that this matrix appears as a display of an element
t+ixecD where t+ix =[t+x, t—x] is displayed on the main diagonal in
iterant form, while y + (—1)"/?z is displayed on the minor diagonal in tandem
with its complex conjugate.

In this way we obtain a mapping of I XC into conventional space-time
so that

M =DxC —— space-time

t+x y+(-1)"*z
: 1/2
(t+lxyy+(_1) Z) i— <y__(_1)1/22 t—x
By defining s: M - R via the formula s(Z, W)= Z * Z — WW, we retrieve
the space-time interval:

s[x+it, y+(~-1)"?z]= 12— x*—y*~2*

(Note that this corresponds to the determinant of the Hermitian matrix.)

A generalization of the argument in Section 3 shows how to derive the
form of the Lorentz transformation in the Pauli algebra:

Let T(E)=A=* E * B where E =t+x0,+ yo,+ zo, is an event, and A
and B are given elements of the Pauli algebra. In order for T to be a Lorentz
transformation it is necessary that ( To)* = I where o denotes conjugation.
Hence

A(AEB)B=E, Vg
A(BEA)B=E, Vg
(AB)E(AB) =E, Ve
Thf:refore AB=1, and by normalizing the radius we can take A= B with
AA=1. Thus T(E)= AEA. (Dropping the use of *.)

In the Hermitian formalism this corresponds to the fact that SL(2, C)
double covers the Lorentz group. Quaternionic formalism is obtained by
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writing an event in the form
e=(—1)"?t+xi+yj+zk

where i=(—1)"%0, j=(=1)"%0,, k= (-1)"%0,.

Here i, j, and k generate the quaternions. In a sequel to this paper we
shall examine the relationships among these ideas and the mathematics of
twistor theory (Penrose, 1977). Complexification of the Hermitian formalism
leads into the geometry of twistor space.
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